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been described to be partially impaired due to defective 
ATF6 processing. Apart from confirming that ATF5 is 
present in human adult neurons, here we report accumu-
lation of ATF5 within the characteristic polyglutamine-
containing neuronal nuclear inclusions in brains of HD 
patients and mice. This correlates with decreased levels 
of soluble ATF5 and of its antiapoptotic target MCL1. We 
then confirmed the deleterious effect of ATF5 deficiency 
in a Caenorhabditis elegans model of polyglutamine-
induced toxicity. Finally, ATF5 overexpression attenuated 
polyglutamine-induced apoptosis in a cell model of HD. 
These results reflect that decreased ATF5 in HD—prob-
ably secondary to sequestration into inclusions—renders 
neurons more vulnerable to mutant huntingtin-induced 
apoptosis and that ATF5-increasing interventions might 
have therapeutic potential for HD.

Keywords  Huntington’s disease · ATF5 · MCL1 · ER 
stress · UPR · Neuroprotection

Introduction

Activating transcription factor-5 (ATF5) [31] is a basic 
valine/leucine zipper (bZIP) transcription factor that belongs 
to the ATF/cAMP response-element binding protein (CREB) 
family [45]. Also known as ATFx or ATF7 [15], ATF5 is 
a stress-response transcription factor [16] as it is induced 
by different cell stressors such as fasting [38], amino acid 
limitation [48], cadmium chloride or sodium arsenite [43]. 
In line with this, and similar to the related transcription fac-
tors ATF4 and ATF6 [17], ATF5 is induced as part of the 
unfolded protein response (UPR) to cope with the stress 
induced by the accumulation of unfolded proteins in the 
endoplasmic reticulum (ER stress) [19, 41, 47, 49]. Such 
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ATF5 induction upon ER stress has been reported to be due 
to increased transcription [19, 37] and/or to selective transla-
tion upon eIF2α-phosphorylation [47, 49]. Essentially, ATF5 
plays a pro-survival role as it promotes transcription of anti-
apoptotic genes such as MCL1 [10, 19, 37]. Accordingly, 
ATF5 is necessary for survival of many different cell types 
such as lymphocytes [35] or cardiomyocytes [46]. ATF5 
protein expression decreases in cells undergoing apoptosis 
following growth factor deprivation [35] while its levels are 
increased and promote apoptotic resistance in a variety of 
human malignancies, including glioblastoma, breast, pan-
creatic, lung, and colon cancers [20, 27].

In the brain, highest ATF5 levels are detected in gliomas 
[1, 27, 37]. In non-pathological brain, high levels are also 
important for proliferation of neural progenitor cells and a 
significant decrease in their ATF5 levels is required for their 
differentiation into mature neurons or glial cells [2, 3, 24]. 
This led to the notion of ATF5 not being expressed in adult 
neurons [14]. However, we have demonstrated that mouse 
adult neurons maintain a steady state level of ATF5 expres-
sion which increases upon UPR-triggering stimuli such as 
tunicamycin or the status epilepticus caused by intra-amyg-
dala injection of kainic acid [41]. This neuronal ATF5 induc-
tion is believed to be neuroprotective as ATF5 overexpres-
sion attenuates ER stress-induced apoptosis in neurons [41].

Huntington’s disease (HD) is the most common geneti-
cally determined neurodegenerative disease and belongs 
to the group of neurological disorders caused by expanded 
CAG triplet repeats encoding self-aggregating poly-glu-
tamine (polyQ) tracts in their respective proteins [33]. HD 
is characterized by marked atrophy in the caudate and puta-
men and to a lesser extent in the cortex and by the pres-
ence of polyQ-containing inclusions bodies (IBs). ER stress 
activation and/or impairment is a common feature of most 
neurodegenerative diseases including HD [18] and we and 
others have previously reported impaired UPR execution in 
HD due to diminished processing of ATF6 [11, 30]. In view 
of the putative neuroprotective role of ATF5 upon ER stress 
induction and its constitutive expression in mouse adult neu-
rons [41], we decided to explore the status of ATF5 in HD 
mouse models and human tissue.

Materials and methods

Human brain tissue samples

Brain specimens used in this study from frontal cortex and 
striatum of HD patients and controls were provided by 
Institute of Neuropathology (HUB-ICO-IDIBELL) Brain 
Bank (Hospitalet de Llobregat, Spain), the Neurological 
Tissue Bank of the IDIBAPS Biobank (Barcelona, Spain), 
the Banco de Tejidos Fundación Cien (BT-CIEN, Madrid, 

Spain), and the Netherlands Brain Bank (Amsterdam, The 
Netherlands). Written informed consent for brain removal 
after death for diagnostic and research purposes was 
obtained from brain donors and/or next of kin. Procedures, 
information and consent forms have been approved by the 
Bioethics Subcommittee of Consejo Superior de Investiga-
ciones Científicas (CSIC, Madrid, Spain). When available, 
the neuropathological examination of HD cases to assign 
HD grade from 0–1 to 4 following Vonsattel’s criteria, and 
the number of CAG repeats is shown in Supplementary 
Table 1. The postmortem interval in tissue processing is also 
indicated in Supplementary Table 1.

Mice

R6/1 transgenic mice for the human exon-1-HTT gene [23] 
in B6CBAF1 background were housed at the Centro de 
Biología Molecular “Severo Ochoa” animal facility. Mice 
were housed four per cage with food and water available 
ad libitum and maintained in a temperature-controlled envi-
ronment on a 12/12 h light–dark cycle with light onset at 
0800 hours. Animal housing and maintenance protocols 
followed the guidelines of Council of Europe Convention 
ETS123. Animal experiments were performed under proto-
cols (PROEX293/15) approved by the Centro de Biología 
Molecular Severo Ochoa Institutional Animal Care and Uti-
lization Committee (Comité de Ética de Experimentación 
Animal del CBM, CEEA-CBM), Madrid, Spain.

Caenorhabditis elegans

The standard methods used for culturing and maintenance 
of C. elegans were as previously described [40]. The strains 
used in this work are: N2, wild type DR subclone of CB 
original (Tc1 pattern I), LD1325, atf-5(tm4397) X [12], 
VZ531 = vzEx173 [Punc-54::Q40::yfp], VZ533 = vzEx175 
[Punc-54::Q40::yfp], VZ534 = atf-5(tm4397) X; vzEx173 
[Punc-54::Q40::yfp] and VZ535  =  atf-5(tm4397) X; 
vzEx175 [Punc-54::Q40::yfp]. All experiments were per-
formed at 20 °C unless otherwise noted. All VZ strains are 
6× backcrossed and LD1325 is 7× backcrossed with N2 wild 
type.

Cell culture and transfection

Neuro-2a neuroblastoma cells were cultured in 10% FBS 
(GIBCO) supplemented DMEM at 37 °C in a 5% CO2 
atmosphere. The day before transfection 3 × 105 cells per 
condition were placed in a six well plate (Falcon), with 
or without glass coverslips, and allowed to attach to the 
plate. N2a cells were transfected (Lipofectamine 2000, 
Thermo Fisher) with the following construct combina-
tions: PolyQ16 and pcDNA3; PolyQ94 and pcDNA3; 
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PolyQ94 and pcDNA3-MYC-mATF5; PolyQ94 and 
p3XFlag-CMV10-Flag-mMcl-1. PolyQ16, PolyQ94, 
pcDNA3-MYC-mATF5 and p3XFlag-CMV10-Flag-
mMcl-1 plasmids were previously described [25, 39, 41]. 
After transfection for 48 h, the transfected cells were used 
for subsequent assays.

Tissue preparation

For human samples, formalin-fixed (4%, 24 h), paraffin-
embedded tissue from cortex and striatum were used. Sec-
tions (5-μm thick) were mounted on superfrost-plus tissue 
slides (Menzel-Gläser) and deparaffinized. Peroxidase activ-
ity was quenched with 0.3% H2O2 in methanol for 30 min, 

20 µm 20 µm 

a

15 µm St St

WTR6/1

CxCx 15 µm 

b ControlsHD

St 20 µm 

Cx 25 µm Cx 25 µm 

20 µm St

15 µm 

15 µm 

c

Fig. 1   As in rodents, ATF5 is expressed by adult human neurons 
and it accumulates in the characteristic HD nuclear inclusions in both 
species. a Immunohistochemistry with ATF5 antibody in cortex (Cx; 
top) and striatum (St; bottom) of 3.5 month-age R6/1 and wild-type 
(WT) mice. Black arrowheads in R6/1 panels (left) show ATF5 accu-
mulation into inclusion bodies in Cx and St. b Immunohistochemistry 
with ATF5 antibody in Cx (top) and St (bottom) postmortem tissue 
of HD patients and control subjects. Black arrowheads in HD panels 

(left) show ATF5 accumulation into inclusion bodies in Cx and St. c 
ATF5 immunohistochemistry and nuclear counterstaining in Cx post-
mortem tissue of HD patients. Black arrowheads indicate that ATF5 
can be found not only in nuclear inclusions (both panels) but also in 
cytoplasmic inclusions in the soma (left panel), in neuritic inclusions 
(right panel), and in neuropil inclusions (right panel). White arrow-
heads point to nucleoli to show that they are not coincident with the 
nuclear inclusions
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followed by antigen retrieval with 10 mM pH 6.0 citrate 
buffer heated by microwave for 15 min.

Mice euthanasia was performed using CO2. Brains were 
immediately removed and dissected on an ice-cold plate 
and left hemispheres, processed for histology, placed in 4% 
paraformaldehyde in Sorensen’s phosphate buffer overnight 
and then immersed in 30% sucrose in PBS for 72 h. Once 
cryoprotected, samples were included in optimum cutting 
temperature (OCT) compound (Tissue-Tek, Sakura Finetek 
Europe, ref. 4583), frozen and stored at −80 °C before use. 
30 µm sagittal sections were cut on a cryostat (Thermo Sci-
entific), collected and stored free floating in glycol contain-
ing buffer (30% glycerol, 30% ethylene glycol in 0.02 M 
phosphate buffer) at −20 °C.

Immunohistochemistry and immunofluorescence

For immunohistochemical staining, sections were first 
washed with PBS and immersed in 0.3% H2O2 in PBS for 
45 min to quench endogenous peroxidase activity. Sec-
tions were then immersed for 1 h in blocking solution (PBS 
containing 0.5% Fetal Bovine Serum, 0.3% Triton X-100 
and 1% BSA) and incubated overnight at 4 °C with rabbit 
anti-ATF5 (1:1000, AVIVA, ARP30970) diluted in block-
ing solution. After washing, brain sections were incubated 
first with biotinylated goat anti-rabbit secondary antibody 
and then with avidin–biotin complex using the Elite Vec-
tastain kit (Vector Laboratories, PK-6101-2). Chromogen 
reactions were performed with diaminobenzidine (SIGMA-
FAST DAB, Sigma, D4293) for 10 min. Mouse sections 

were mounted on glass slides and coverslipped with Mow-
iol (Calbiochem, Cat. 475904) while human sections where 
first dehydrated and then mounted with DePex (SERVA). 
Images were captured using an Olympus BX41 microscope 
with an Olympus camera DP-70 (Olympus Denmark A/S).

For immunofluorescence, brain sections and N2a cover-
slips were pretreated with 0.1% Triton X-100 for 30 min, 
1 M glycine for 15 min and blocking solution (1% BSA, 
0.3% FBS and 0.1% Triton X-100) for 1 h. Sections were 
then incubated overnight at 4 °C with rabbit anti-ATF5 
(1:1000, AVIVA, ARP30970) and goat anti-huntingtin 
(1:200, N-18 Santa Cruz, sc-8767) in blocking solution.

The following day, sections were washed in PBS and 
incubated with secondary antibodies for 1  h: anti-goat 
Alexa 555 (1:500, ThermoFisher, A-21432) and anti-rabbit 
Alexa 488 (1:500, ThermoFisher, A-21206). After wash-
ing, nuclei were counterstained with DAPI (1:5000, Cal-
biochem, 28718-90-3) for 3 min. Finally, sections were 
mounted on glass slides, coverslipped with Mowiol (Cal-
biochem, 475904) and maintained at 4 °C. N2a coverslips 
were co-incubated with rabbit anti-cleaved caspase 3 (1:100, 
Cell Signaling, 9579) and goat anti-ATF5 (1:1000, Santa 
Cruz, sc-377168) for 1 h at room temperature. Coverslips 
were then washed with PBS and co-incubated with anti-goat 
Alexa 555 (A-21432) and anti-rabbit Alexa 647 (A-31573) 
for 1 h. Nuclei were counterstained as with tissue sections. 
Coverslips were mounted in FluorSave (Calbiochem, Merck 
KGaA). Images were acquired with a laser confocal LSM710 
system coupled to the invert Axioobserver microscope with 
a 63×, 1.4 numerical aperture oil-immersion objective using 
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Fig. 2   ATF5-positive neuronal nuclear inclusions colocalize with the 
characteristic polyQ-containing inclusions in HD mice and human 
tissue. Double immunofluorescence with ATF5 (green) and HTT 
(EM48, red) antibodies in St of 3.5 month-age R6/1 mice (a) and in 
Cx of HD patients (b). White arrowheads show ATF5 positive intra-

nuclear inclusion bodies. Dashed lines delimit the regions taken for 
magnification and colocalization analysis. Orthogonal images (right 
panels) show colocalization of ATF5 and mHTT immunofluores-
cence projected in YZ and XZ axis. Nuclei were counterstained with 
DAPI (blue)
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the Zen2010B sp1 software (Carl Zeiss). Sequential optic 
sections (1 μm) were acquired in z stacks. Images were pro-
cessed using ImageJ 1.45s.

Western blot

Samples from human brain were stored at −80 °C and 
ground with a mortar in a frozen environment with liq-
uid nitrogen to prevent thawing of the samples, resulting 
in tissue powder. Mouse brains were quickly dissected 
on an ice-cold plate and the different structures stored 
at −80  °C. Human and mouse protein extracts were 
prepared by homogenizing brain structures in ice-cold 
extraction buffer [20 mM HEPES pH 7.4, 100 mM NaCl, 

20 mM NaF, 1% Triton X-100, 1 mM sodium orthovana-
date, 1 μM okadaic acid, 5 mM sodium pyrophosphate, 
30  mM β-glycerophosphate, 5  mM EDTA, protease 
inhibitors (Complete, Roche, Cat. No 11697498001)]. 
Homogenates were centrifuged at 15,000 rpm for 15 min 
at 4  °C. The resulting supernatant was collected, and 
protein content determined by Quick Start Bradford Pro-
tein Assay (Bio-Rad, 500-0203). 20 μg of total protein 
were electrophoresed on 10% SDS–polyacrylamide gel, 
transferred to a nitrocellulose blotting membrane (Amer-
sham Protran 0.45 μm, GE Healthcare Life Sciences, 
10600002) and blocked in TBS-T (150 mM NaCl, 20 mM 
Tris–HCl, pH 7.5, 0.1% Tween 20) supplemented with 5% 
non-fat dry milk. Membranes were incubated overnight 
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Fig. 3   Decreased ATF5 levels in striatum and cortex of HD mouse 
model and human tissue. a Representative western blots of ATF5 pro-
tein levels in Cx and St of 3.5 month-age R6/1 mice (n = 9) and WT 
mice (n = 9). b Representative western blots of ATF5 protein levels 
in Cx and St of HD patients (n = 9) compared to their respective con-

trols (n  =  9). ATF5 is normalized by β-ACTIN in all samples and 
also by TUBB3 in human samples. Histograms show quantification 
of ATF5 protein abundance with respect to control (Student’s t test; 
*p < 0.05, **p < 0.01, ***p < 0.001). Data represent mean ± SEM
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at 4 °C with either rabbit anti-ATF5 (1:1000, AVIVA, 
ARP30970), rabbit anti-MCL1 (1:1000, Santa Cruz, 
sc-819), mouse anti-TUBB3 (1:5000; Novus Biologi-
cals, NB120-11314) or mouse anti-β-ACTIN (1:50,000, 
SIGMA, A2066) in TBS-T supplemented with 5% non-fat 
dry milk, washed with TBS-T and next incubated with 
HRP-conjugated anti-rabbit IgG (1:2000, DAKO, P0448) 
and developed using the ECL detection kit (PerkinElmer, 
NEL105001EA).

Data analysis

Statistical analysis was performed with SPSS 21.0 (SPSS® 
Statistic IBM®). Data are represented as Mean ± SEM 
(standard error of the mean). The normality of the data was 
analyzed by Shapiro–Wilk or Kolmogorov–Smirnov tests. 
For two-group comparison, two-tailed t Student’s test was 
performed. For multiple comparisons, data were analyzed by 
one way-ANOVA test followed by an LSD or a Games–How-
ell post hoc test. A critical value for significance of p < 0.05 
was used throughout the study.

Results

ATF5 is sequestered into neuronal polyQ inclusions 
in HD mouse model and human tissue

We first performed ATF5 immunohistochemistry (IHC) on 
brain sections from an HD mouse model and matching wild 
type mice. More precisely, we analyzed the widely used 
R6/1 transgenic mouse model of expanded CAG/polyQ 
disease that ubiquitously expresses N-terminal huntingtin 
(HTT) with 115 CAG repeats [23]. Cortex and striatum were 
analyzed as these are the most affected brain regions in HD 
and the most salient feature was the bold accumulation of 
ATF5 immunoreactivity in neuronal nuclear inclusion bod-
ies (IBs) in both brain regions of R6/1 but not in wild type 
mice (Fig. 1a). Interestingly, this accumulation of ATF5 in 
IBs of R6/1 mice is an early event as it can be observed from 
an early-symptomatic age (3.5 months). We then performed 
ATF5 IHC on human HD and control tissue which for the 
first time demonstrated expression of ATF5 in human adult 
neurons (Fig. 1b) in line with our previous observations in 
mouse tissue [41]. Furthermore, ATF5 immunostaining 
also confirmed accumulation of ATF5 into neuronal nuclear 
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tive western blots of MCL1 protein levels in Cx and St of 3.5 month-
age R6/1 mice (n  =  7) and WT mice (n  =  7). b Representative 
western blots of MCL1 protein levels in Cx and St of HD patients 
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show quantification of MCL1 protein abundance with respect to con-
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aggregates that resemble the characteristic polyQ IBs in HD 
brains (Fig. 1b). Apart from nuclear inclusions, HD patients 
also show inclusions in the soma and neurites and, interest-
ingly, ATF5 can also be found in cytoplasmic inclusions in 
the soma, in neuritic inclusions, and in neuropil inclusions 
(Fig. 1c).

To confirm that ATF5 is in fact being sequestered into 
the polyQ-containing neuronal nuclear IBs, we performed 
double immunofluorescence with antibodies against ATF5 
and N-terminal mutant HTT (mHTT). As shown in Fig. 2, 
ATF5-positive nuclear inclusions colocalized with mHTT 
nuclear inclusions both in R6/1 mouse tissue (Fig. 2a) (Pear-
son correlation coefficient = 0.7) and in human HD tissue 
(Fig. 2b) (Pearson correlation coefficient = 0.78).

Decreased ATF5 levels in striatum and cortex of HD 
mouse model and human tissue

We then performed Western blot analysis to test whether 
accumulation of ATF5 within mHTT IBs correlates 
with decreased levels of soluble monomeric ATF5. We 

decided to analyze R6/1 mice at the age of 3.5 months 
when they are pre- or early-symptomatic with very little 
striatal atrophy and neuronal loss [22] and we observed 
a 40.5% reduction of ATF5 levels in the striatum respect 
to wild type (p = 0.0003) (Fig. 3a). In cortex of R6/1 
mice, we also observed a significant although less pro-
nounced decrease in the levels of ATF5 (18.9% decrease, 
p < 0.05) (Fig. 3a). In HD patient postmortem brains, we 
also observed decreased ATF5 levels both in cortex and 
caudate/putamen, with respect to samples from control 
subjects (Fig. 3b). In this case, the decrease was more pro-
nounced and more significant in cortex (78.5% decrease, 
p  =  0.0001) than in striatal nuclei (24.7% decrease, 
p = 0.006). Since HD patient postmortem striatum do 
show significant neuronal loss, we decided to normalize 
the levels of ATF5 to the level of the neuronal marker 
beta-III tubulin (TUBB3) [4]. When applying this correc-
tion for the effect of neuronal loss, the ATF5 decrease is 
still significant in cortex (66.2% decrease, p = 0.04) while 
only a tendency in striatum. This suggests that, at least in 
part, neuronal loss contributes to the decreased striatal 
ATF5 levels observed respect to total protein content.
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Decreased levels of the antiapoptotic ATF5 target 
MCL1 in striatum and cortex of HD mouse model 
and human tissue

We then wondered whether decreased levels of ATF5 would 
correlate with decreased levels of its target MCL1 which has 
been proposed to play an important role in the antiapoptotic 
actions of ATF5 [19, 37]. For this, we performed Western 
blot analysis of MCL1 on HD mouse model and human tis-
sue samples. As expected, a marked decrease in MCL1 lev-
els was observed in striatum (53.1% decrease, p < 0.0001) 
and in cortex (47.4% decrease, p = 0.016) of 3.5 month old 
R6/1 mice with respect to age-matched wild type controls 
(Fig. 4a). Similar results of decreased MCL1 levels were 
also observed in striatum (77.7% decrease, p < 0.0001) and 
cortex (55% decrease, p = 0.002) of HD patients respect to 
control subjects (Fig. 4b).

Deleterious effect of ATF5 deficiency in a C. elegans 
model of polyQ toxicity

To gain insight into the potential deleterious effect of 
decreased ATF5 in an in vivo context of polyQ-induced 
toxicity, we moved to the nematode model C. elegans. 
Specifically, we used a C. elegans strain that carries the 

transgene vzEx173 [Punc-54::Q40::yfp] resulting in the 
expression of a fusion protein Q40::YFP in worm muscle 
cells (Q40::yfp expression is controlled by the unc-54 myo-
sin heavy chain gene promoter), causing an age-dependent 
aggregation phenotype whose readout is a progressive 
motility deficit [29]. Thus, we generated worms express-
ing the vzEx173 [Punc-54::Q40::yfp] transgene in an atf-
5(tm4397) null mutant background and found that lack 
of atf-5 causes an increase in the number of Q40::YFP 
aggregates (Fig. 5a, b). Interestingly, while atf-5 deficiency 
does not provoke any motility defect in otherwise wild type 
worms, we found a marked decrease in motility when the 
atf-5 mutation was introduced in the Q40::YFP express-
ing background (Fig. 5c). Similar results were obtained 
when using another independent transgene vzEx175 [Punc-
54::Q40::yfp] (data not shown). Together, these results 
indicate that decreased ATF5 levels exacerbate polyQ-
toxicity in vivo.

ATF5 protects from polyglutamine‑induced apoptosis 
in a cell model of HD

The decreased levels of ATF5 and of its antiapoptotic tar-
get MCL1 in the brain of the R6/1 HD mouse model and 
patients, together with the deleterious effect of atf-5 defi-
ciency in polyQ-expressing C. elegans strains, suggest that 
increasing ATF5 levels might be beneficial through attenua-
tion of polyQ-induced apoptosis. To test this, we performed 
experiments on N2a neuroblastoma cells.

First, we verified that transfection of an ATF5 expres-
sion vector increased both ATF5 and MCL1 protein lev-
els (Fig. 6a). Then, we verified that transfection of mHTT 
fused to CFP (PolyQ94), but not wild type N-terminal 
HTT fused to CFP (PolyQ16), resulted in IB formation 
(Fig. 6b, c) and in polyQ-induced apoptosis as evidenced 
by cleaved caspase-3 immunofluorescence or by DAPI 
nuclear counterstaining (Fig. 6c, d). Co-transfection of 
ATF5 with PolyQ94 resulted in increased diffuse ATF5 
levels despite accumulation of ATF5 within polyQ inclu-
sions (Fig. 6b). Besides, we observed that the incidence of 
apoptosis in PolyQ94 + ATF5 cells was much lower than 
in PolyQ94 cells and comparable to that in PolyQ16 cells 
(Fig. 6c, d), thus demonstrating that ATF5 overexpression 
is protective against polyQ-induced apoptosis. We also 
assayed the effect of the sole overexpression of MCL1 on 
polyQ94-induced apoptosis. As shown in Fig. 6e–g, MCL1 
overexpression by itself also significantly reduced the rate 
of apoptosis induced by PolyQ94 to levels comparable to 
those in PolyQ16 cells. This confirms that the increased 
MCL1 levels induced by ATF5 overexpression contribute 
to the neuroprotective effect of ATF5.

Fig. 6   ATF5 protects against polyQ-induced apoptosis in a cell 
model of HD. a Representative western blot of ATF5 and MCL1 pro-
tein levels upon pcDNA-MYC-mATF5 (ATF5) transfection of N2a 
neuroblastoma cells. The histogram shows the abundance of MCL1 
protein in transfected cells with respect to the control (Mock) (n = 6; 
Student’s t test). b Immunofluorescence analysis of ATF5 pattern in 
N2a cells transfected with toxic PolyQ94-CFP only (PolyQ94) or 
in combination with ATF5 (PolyQ94 and ATF5) shows accumula-
tion of ATF5 within polyQ-containing inclusions (yellow arrow-
heads) in both paradigms and that ATF5 overexpression results also 
in increased diffuse ATF5 staining in PolyQ94 and ATF5. c Apop-
tosis induction analysis by immunofluorescence of cleaved caspase-3 
(c-c3) and nuclear morphology (DAPI) in N2a cells transfected with 
either PolyQ16, PolyQ94 or PolyQ94 and ATF5. d Quantification 
of apoptotic cell death in N2a cells transfected with either PolyQ16, 
PolyQ94 or PolyQ94 and ATF5 with respect to the total number of 
cells counted (n  =  300). Analysis of variance (ANOVA), followed 
by minimum significant difference or Games–Howell. e Western 
blot analysis of MCL1 protein levels upon p3XFlag-CMV10-Flag-
mMcl-1 (MCL1) transfection of N2a cells. The histogram shows the 
abundance of MCL1 protein in transfected cells with respect to the 
control (Mock) (n = 2; Student’s t test). f Apoptosis induction analy-
sis by immunofluorescence of cleaved caspase-3 (c-c3) and nuclear 
morphology (DAPI) in N2a cells transfected with either PolyQ16, 
PolyQ94 or PolyQ94 and MCL1. g Quantification of apoptotic cell 
death in N2a cells transfected with either PolyQ16, PolyQ94 or 
PolyQ94 and MCL1 with respect to the total number of cells counted 
(n  =  700). Analysis of variance (ANOVA), followed by minimum 
significant difference or Games–Howell, *p  <  0.05, ***p  <  0.001. 
Data represent mean ± SEM

◂
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Discussion

Here we first report accumulation of ATF5 within the char-
acteristic neuronal polyQ-containing IBs in the brain of HD 
mice starting at early-symptomatic ages and also in postmor-
tem human HD brain tissue. This sequestration of ATF5 into 
IBs correlates with a decrease in the level of soluble ATF5 
in both mouse and human HD tissue and with decreased 
levels of the antiapoptotic ATF5 target MCL1. Here we 
also analyze a nematode model of polyQ-induced toxicity 
which confirmed the deleterious effect of ATF5 deficiency. 
Finally, we show that ATF5 overexpression attenuates 
polyQ-induced apoptosis in a neuroblastoma cell model of 
HD. Together these results indicate that decreased levels of 
ATF5 in HD brain—probably secondary to its sequestration 
into polyQ IBs—render neurons more vulnerable to mutant 
huntingtin-induced apoptosis.

We have previously shown that, contrary to the previ-
ous notion of adult neurons not expressing ATF5 [14], adult 
mice do show steady state levels of ATF5 expression in 
neurons [41]. Now, by showing ATF5 accumulation into 
neuronal IBs in human HD brain together with the diffuse 
ATF5 immunostaining in neurons of control and HD brains, 
we here extend to humans the previous observation of ATF5 
being expressed by adult neurons.

There are different possible mechanisms by which ATF5 
could accumulate into polyQ-containing IBs in brains of HD 
patients and mouse models. For instance, it is known that 
many transcription factors bind expanded polyQ stretches 
and are often found sequestered into IBs [32]. These include 
CREB-binding protein (CBP), SP1, TBP, p53 [32] and many 
others such as the bZIP transcription factor C/EBPα [8]. 
Since bZIP containing transcription factors have the ability 
to form heterodimers [15], it is possible that ATF5 could 
reach the polyQ IBs through indirect interaction with any of 
the transcription factors previously reported to accumulate 
into polyQ IBs. Alternatively, it is known that ATF5 has by 
itself propensity to aggregate in vitro [5, 6]. It is therefore 
possible that ATF5 could self-aggregate in vivo in patho-
physiological conditions such as HD in which proteostasis 
and quality control mechanisms are compromised [7, 34, 
44]. Such ATF5 microaggregates could then coalesce into 
mature IBs [21] such as those containing other polyQ-driven 
aggregates.

We have mentioned that the decrease in soluble ATF5 
might be secondary to its sequestration into IBs. An indica-
tor in favor of this possibility is that the decrease in ATF5 
protein levels in brain of HD mice and patients takes place 
without a matching decrease in its mRNA levels (data not 
shown). Therefore, the decrease in protein levels will most 
likely be secondary to decreased translation or to dimin-
ished half-life of the soluble protein, for instance because 

it gets aggregated. In fact, there are multiple examples of 
proteins whose sequestration into polyQ-IBs correlates with 
decreased soluble levels and loss of function [13, 26].

Regardless of the mechanism by which it takes place, 
we here provide evidence of decreased ATF5 being del-
eterious, probably, because it contributes to a deficient 
execution of the UPR in HD in line with the previously 
reported deficient processing of ATF6 in HD patients and 
mouse models [11, 30]. Such deficient UPR execution 
will have proapoptotic effect as we show here that it is 
paralleled by a decrease in the levels of MCL1, a well-
established target of ATF5 with antiapoptotic actions. 
Therefore, in line with the here shown neuroprotective 
effect of ATF5 overexpression in a cell model of HD, 
any pharmacological intervention able to increase ATF5 
levels in HD might be of therapeutic value. In this regard, 
salubrinal, guanabenz and sephin1 are small drugs that 
prolong eIF2α phosphorylation by inhibiting PPP1R15A 
(GADD34) and therefore modulate the UPR [9, 42]. 
Accordingly, salubrinal increases ATF5 levels in primary 
neuronal cultures [41] and it has been shown to attenuate 
cell death induced by the ER stress inducer tunicamy-
cin [41] and also by N-terminal mutant HTT [36]. This 
suggests that salubrinal or any other of the PPP1R15A 
inhibitors might be beneficial in HD. However, there 
might also be unwanted effects as in vivo administration 
of salubrinal has been reported to increase toxicity in a 
mouse model of prion-induced neurodegeneration [28].

In summary, here we report that reduced levels of ATF5 
in brain of HD patients, probably due to its sequestration into 
the characteristic PolyQ containing neuronal IBs, correlates 
with decreased levels of the antiapoptotic protein MCL1, a 
transcriptional target of ATF5. We also provide evidence 
of decreased ATF5 being deleterious by rendering neurons 
more vulnerable to polyQ-induced apoptosis, thus suggest-
ing that ATF5-increasing pharmacological interventions 
might open future therapeutic opportunities for HD.
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